

Genus Digital RFC/IFC

User Need

Flexible distribution of RF

Allows distribution of chunks of spectrum, but not individual channels Dynamic switching for NGSO constellations

Needs paths to be pre-configured

Transport of RF over distance

Traditionally using Fibre between matrix switches DWDM to allow for distance Periodically regenerated with EDFAs

Enabling Technologies

DIF moves a lot of data

Simple example:
Bandwidth 1000MHz
Sample rate of 2000Msps
12 bit sample depth
16GB/s + protocol overheads

High sampling rates needed

Nyquist – sample at > 2x signal b/w Oversampling improves C/No

High Speed Ethernet

Ethernet speeds increasing with demand 100GBe now becoming "commodity" 400GBe commercially available 800GBe being demonstrated 1.6TBe under development

High Speed Data Converters

L-band converters now becoming commodity
ADCs capable up to Ku Band sampling

Genus Digital samples Analog RF signals from multiple sources, transporting them as IP packets on a single fibre reconstructing them as an RF signal at a remote location

Front Panel

Rear Connectivity

Unit Specification

RF Interface

Frequency Range – 850-2450 MHz

RF Inputs / Outputs

500MHz overlapping – bidirectional channels

2000MHz instantaneous B/W

In-built Dual Polarization Support

60dBc SFDR

GPS Disciplined Oscillator

Low Phase Noise, High Frequency Accuracy

Digital Interface

100GbE data, DIFI compliant 1GbE control, SNMP, ETL RCM protocol

User Interface

Local LCD touchscreen

Web GUI

Physical

2U 19" Rack mount modular chassis

Same box at either end of DIF system

DIF Benefits

Resilience

Easier to re-route signals in digital domain

No longer need specific fibre type required for RF over Fibre Continuity of Operations (COOP)

Signal Quality

Signal quality defined by ADC / DAC parameters

No longer dependant on distance of transmission

Flexibility

Ease of deployment

Modulation Agnostic

Signal routing now moves to the IP domain

Enabler for Virtualization

IP domain signals can be further processed

Security

Signal security maintained at source – encryption "behind the fence"

DIF Use Cases

Security and Intelligence

Satellite Link BDC IFC IP Network HPA Virtual Modems Virtual

Enabler for digital modems - Software or Hardware based

BDC IFC IFL Network

Decoupling Antenna from Modem

"Behind the wire" encryption

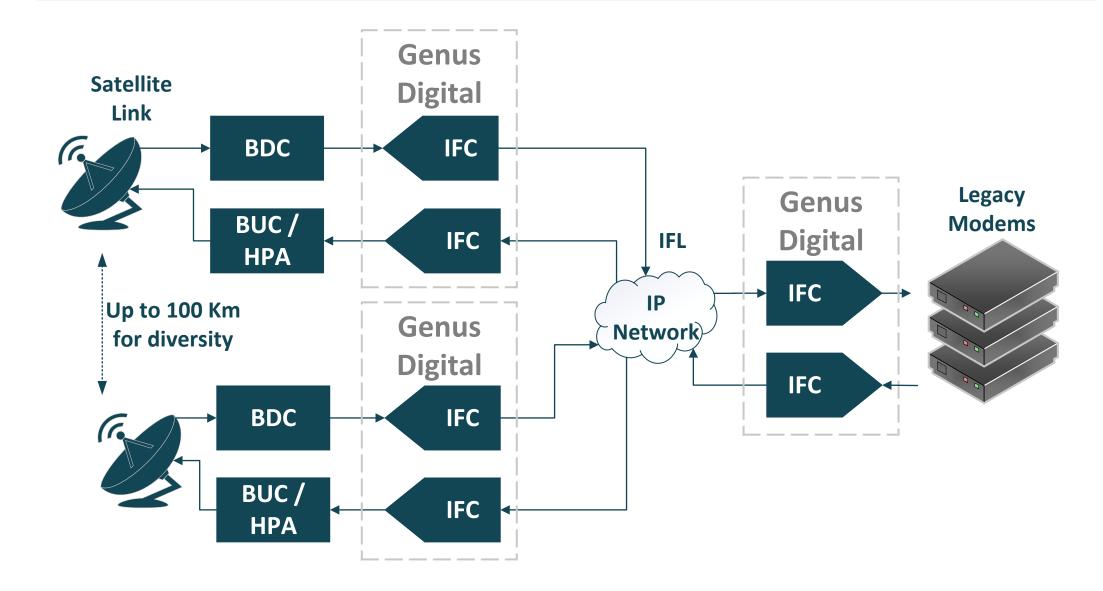
Remote surveillance

Satellite Rx

Only the antenna in "line of fire"

Remote Monitoring

Additional Signal Processing


Further processing of received spectrum

Receive Only for Lawful Intercept

Signal detection / location

High precision timestamping enabling transmitter location

Diversity Antenna Sites

Antenna Diversity for Resiliance

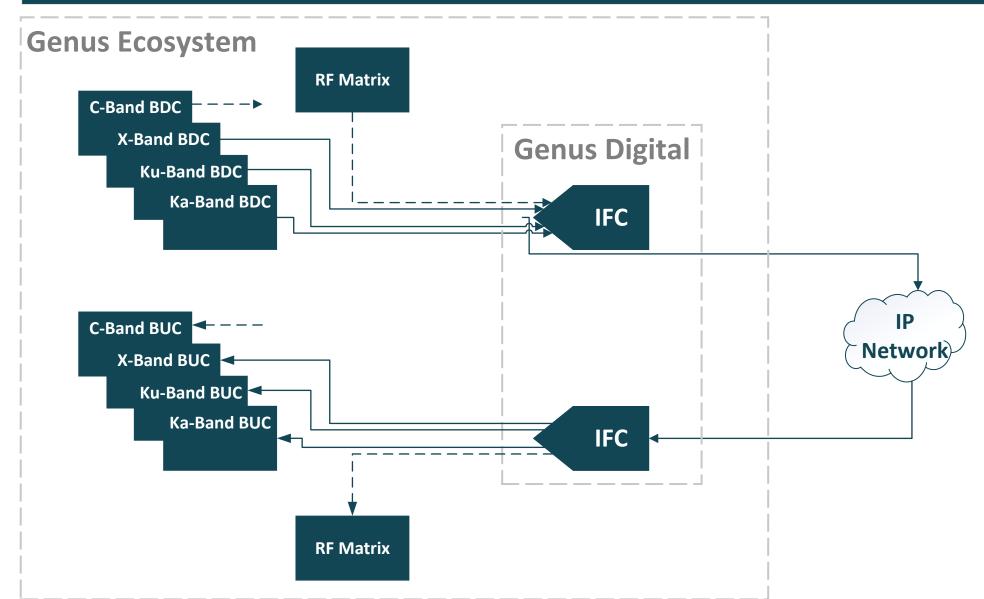
Rain fade and Atmospheric Conditions

Kinetic Strike

Transmission over 100s of miles without degradation

Modulation Agnostic

Signal routing and re-routing in the IP domain


Signal Quality

Signal quality is no longer a function of length of fibre or quality of RF cabling This allows increased diversity antenna separation – key as satellite

frequencies increase

No longer need multiple fibre regeneration points to maintain signal quality

Genus Eco System Support

Genus Digital is part or the ETL Genus ecosystem

Supporting a range of:

Frequency converters (L, C, X, Ku, Ka bands)

RF Matrix Switches

Amplifiers and more

Providing:

Flexibility of deployment

Future proofing

Ease of transition and interoperation with extant equipment

Hybrid deployments

Easing the transition from the Analog to Digital World

Simon Swift – simon.swift@etlystems.com V1.3.2023

Virtual modems

Local or Cloud

CAPEX to OPEX

Virtual Instruments

Spectrum Analyzer

Carrier Monitoring

Flexibility to deploy new waveforms

Interference Detection / Geolocation

Monitoring any signal from anywhere