CLOSING THE TIMING LOOP WITH DIGITAL IF 1.2

MILCOM 2023

The security level of this presentation is: UNCLASSIFIED U.S. Export Classification: No Export Controlled Information. © 2023 ARKA Group, L.P. All rights reserved.

ARKA GROUP, L.P. 2315 Briargate Pkwy., Suite 100 Colorado Springs, CO 80920 (719) 522-2800 CAGE No. 5AK24

THE ISSUE

REAL-TIME SAMPLES PRODUCED AND CONSUMED BY INDEPENDENT DEVICES

- Transmission over the network means that arrival times are delayed / jittered from transmit times.
 - No amount of buffer can solve a long-term average rate difference.
- Average long-term rate error must be 0.
- Buffer can solve errors in jitter / delay / burst that are cumulatively smaller than the buffer size.
- Large buffer depths can absorb larger errors but introduce larger latencies which can be unacceptable.

The problem is only hard when the sink is the reference for the sample rate: e.g. Software modem transmitting to digitizer for output to DAC

THE SIMPLE ANSWER

CLOSE THE LOOP THROUGH GPS

WHEN SIMPLE DOESN'T WORK

NO EXTERNAL LOOP

- Take away the reference at either end and now the potential for a rate mismatch occurs.
- We could enumerate all sorts of combinations of missing references but the solution for the worst case works for all of them.
- Worst case:
 - Isolated DAC running on a local oscillator with no idea of the actual UTC TOD.
 - Software sample source running on a computer with no access to NTP and the time set incorrectly

DIRECT LOOP CONCEPT

DIAGRAM FOR DISCUSSION

RULES FOR TIMESTAMPS

MAKING PACKETS THAT ARE "SENDABLE"

Producing valid future DAC timestamps is possible if they are always mathematically related to the present DAC time

As long as the timestamps are always predictable from a single valid timestamp and the sample rate, this is easy.

Timestamps should be mathematically perfect:

- The owner of the clock (DAC) may form constantly changing opinions about the relationship between a TOD source (IRIG) and the sample clock
- To make the timestamps predictable, it should only "resync" or cause a discontinuity in the DAC clock TOD on startup or on resync command.
- Between resyncs, the source can always predict future DAC timestamps based on its current estimate of the DAC TOD and some simple math.

A R K A

CONTROL PACKETS

A STREAM OF SYNCHRONIZATION INFORMATION

SOURCE ESTIMATING TOD AT THE SINK

SIMPLE ALGORITHM

- Timestamp all arriving DAC TOD control packets with a local monotonic clock time.
- Save the delta between the embedded DAC TOD and the locally applied monotonic timestamp.
- When DAC TOD is needed at source for sample release, use monotonic + delta.
- Update delta on each control packet.

PROBLEMS

- Input network jitter is carried through as jitter in release times.
- Additional jitter occurs on the way to the DAC.
- Any rate differences manifest as steps in the value of delta and result in steps in the interpacket output delays.

EXAMPLE FROM THE WILD

BUFFER LEVEL DRIFT DUE TO SAMPLE RATE MISMATCH

BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET 50% BUFFER FULLNESS AVERAGE - SIMPLE / OBVIOUS ANSWER

\rm 🗛 R K A

BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET SOME "NEARLY FULL" WITH 0 OVERFLOW - MINIMIZE CHANCE OF UNDERFLOW

BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET SOME "NEARLY EMPTY" WITH 0 UNDERFLOW - MINIMIZE LINK LATENCY

A R K A

No Export Controlled Information. © 2023 ARKA Group, L.P. All rights reserved.

SYNCH & FLOW CONTROL SUBCOMMITTEE

Chris Badgett, Kratos	Kurt Peters, Science Applications International Corp.
Andrea Ballester, L3Harris	Todd Reinking, Welkin Sciences
Brian Banister, Comtech Satellite Network Technologies	Christian Rodriguez, Microsoft
Oliver Bunting, ETL Systems Ltd	Chris Rose, Viasat
Lisa Chan, L3Harris	Jim Rosenberg, Wavestream Corp Organizer
Eric Fankhauser, Quintech Electronics	Sharif Siddiqui, Apothym Technology Group
Eric Felix, Swedish Microwave AB	Annmarie Stanley, Kratos
Matt Hammond, Rohde & Schwarz	Joni Sterlacci, IEEE-ISTO
Todd Johnson, L3Harris	Bryan Stilwell, Bascom Hunter Technology
Jo Kenens, St Engineering iDirect	Javier Trujillo, SES Engineering
Kenny Kirchoff, Kymeta Corp.	A.J. Vigil, Systems Technologies
Jason Markel, Dept. of Defense	Rob Weinstein, Comtech Satellite Network Technologies
Brian Olson, ARKA	

THANK YOU FOR COMING!

QUESTIONS?

Brian Olson

Fellow

ARKA Group

brian@amergint.com

