CLOSING THE TIMING LOOP WITH DIGITAL IF 1.2

MILCOM 2023
THE ISSUE

REAL-TIME SAMPLES PRODUCED AND CONSUMED BY INDEPENDENT DEVICES

- Transmission over the network means that arrival times are delayed / jittered from transmit times.
 - No amount of buffer can solve a long-term average rate difference.
- Average long-term rate error must be 0.
- Buffer can solve errors in jitter / delay / burst that are cumulatively smaller than the buffer size.
- Large buffer depths can absorb larger errors but introduce larger latencies which can be unacceptable.

The problem is only hard when the sink is the reference for the sample rate:
- e.g. Software modem transmitting to digitizer for output to DAC
THE SIMPLE ANSWER
CLOSE THE LOOP THROUGH GPS

Future samples

10MHz/PPS

GPS

NTP/PTP

Future samples
WHEN SIMPLE DOESN’T WORK

NO EXTERNAL LOOP

• Take away the reference at either end and now the potential for a rate mismatch occurs.
• We could enumerate all sorts of combinations of missing references but the solution for the worst case works for all of them.
• Worst case:
 • Isolated DAC running on a local oscillator with no idea of the actual UTC TOD.
 • Software sample source running on a computer with no access to NTP and the time set incorrectly
DIRECT LOOP CONCEPT

DIAGRAM FOR DISCUSSION
RULES FOR TIMESTAMPS

MAKING PACKETS THAT ARE “SENDABLE”

1. Producing valid future DAC timestamps is possible if they are always mathematically related to the present DAC time.

2. As long as the timestamps are always predictable from a single valid timestamp and the sample rate, this is easy.

3. Timestamps should be mathematically perfect:
 - The owner of the clock (DAC) may form constantly changing opinions about the relationship between a TOD source (IRIG) and the sample clock.
 - To make the timestamps predictable, it should only “resync” or cause a discontinuity in the DAC clock TOD on startup or on resync command.
 - Between resynchs, the source can always predict future DAC timestamps based on its current estimate of the DAC TOD and some simple math.
CONTROL PACKETS
A STREAM OF SYNCHRONIZATION INFORMATION

DAC TOD Timestamp

Buffer-level information:
• Total size in bytes
• Average level 0-255
• Underflow bit
• Nearly empty bit
• Nearly full bit
• Overflow bit
SOURCE ESTIMATING TOD AT THE SINK

SIMPLE ALGORITHM

- Timestamp all arriving DAC TOD control packets with a local monotonic clock time.
- Save the delta between the embedded DAC TOD and the locally applied monotonic timestamp.
- When DAC TOD is needed at source for sample release, use monotonic + delta.
- Update delta on each control packet.

PROBLEMS

- Input network jitter is carried through as jitter in release times.
- Additional jitter occurs on the way to the DAC.
- Any rate differences manifest as steps in the value of delta and result in steps in the interpacket output delays.
EXAMPLE FROM THE WILD

BUFFER LEVEL DRIFT DUE TO SAMPLE RATE MISMATCH

Buffer Level w/o Rate Correction

Sample Index Time (seconds)

Buffer Level (ms)

Buffer Level
Rate Estimate
BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET 50% BUFFER FULLNESS AVERAGE – SIMPLE / OBVIOUS ANSWER

Buffer Level with Rate Correction

Buffer Level (rate corrected)

Sample Index Time (seconds)

No Export Controlled Information.
© 2023 ARKA Group, L.P. All rights reserved.
BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET SOME "NEARLY FULL" WITH 0 OVERFLOW – MINIMIZE CHANCE OF UNDERFLOW
BUFFER DEPTH FROM THE REAL EXAMPLE

TARGET SOME "NEARLY EMPTY" WITH 0 UNDERFLOW – MINIMIZE LINK LATENCY
SYNCH & FLOW CONTROL SUBCOMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris Badgett, Kratos</td>
<td>Kurt Peters, Science Applications International Corp.</td>
</tr>
<tr>
<td>Andrea Ballester, L3Harris</td>
<td>Todd Reinking, Welkin Sciences</td>
</tr>
<tr>
<td>Brian Banister, Comtech Satellite Network Technologies</td>
<td>Christian Rodriguez, Microsoft</td>
</tr>
<tr>
<td>Oliver Bunting, ETL Systems Ltd</td>
<td>Chris Rose, Viasat</td>
</tr>
<tr>
<td>Lisa Chan, L3Harris</td>
<td>Jim Rosenberg, Wavestream Corp. - Organizer</td>
</tr>
<tr>
<td>Eric Fankhauser, Quintech Electronics</td>
<td>Sharif Siddiqui, Apothym Technology Group</td>
</tr>
<tr>
<td>Eric Felix, Swedish Microwave AB</td>
<td>Annmarie Stanley, Kratos</td>
</tr>
<tr>
<td>Matt Hammond, Rohde & Schwarz</td>
<td>Joni Sterlacci, IEEE-ISTO</td>
</tr>
<tr>
<td>Todd Johnson, L3Harris</td>
<td>Bryan Stilwell, Bascom Hunter Technology</td>
</tr>
<tr>
<td>Jo Kenens, St Engineering iDirect</td>
<td>Javier Trujillo, SES Engineering</td>
</tr>
<tr>
<td>Kenny Kirchoff, Kymeta Corp.</td>
<td>A.J. Vigil, Systems Technologies</td>
</tr>
<tr>
<td>Jason Markel, Dept. of Defense</td>
<td>Rob Weinstein, Comtech Satellite Network Technologies</td>
</tr>
<tr>
<td>Brian Olson, ARKA</td>
<td></td>
</tr>
</tbody>
</table>
THANK YOU FOR COMING!

QUESTIONS?

Brian Olson
Fellow
ARKA Group
brian@amergint.com